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ABSTRACT

 

A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to
estimate stability and control derivatives from flight data. This technique is being studied to support
adaptive control system concepts currently being developed by NASA (National Aeronautics and Space
Administration), academia, and industry. This report describes the basic real-time algorithm used for this
study and implementation issues for onboard usage as part of an indirect-adaptive control system. A
confidence measures system for automated evaluation of PID results is discussed. Results calculated
using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot-input
doublets and automated inputs at several flight conditions. Estimated derivatives are compared to
aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well
enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates
converged rapidly to sufficient levels of accuracy. The devised confidence measures used were
moderately successful.

 

NOMENCLATURE

 

a

 

Y

 

lateral acceleration (positive toward the right), g's

 

a

 

Z

 

vertical acceleration (positive down), g's

 

b

 

wingspan, 42.7 ft

mean aerodynamic chord, 15.94 ft

c.g. aircraft center of gravity

 

C

 

l

 

rolling moment coefficient

 

C

 

m

 

pitching moment coefficient

 

C

 

n

 

yawing moment coefficient

 

C

 

Y

 

y-axis force coefficient

 

C

 

Z

 

z-axis force coefficient

DFT discrete Fourier transform

 

f

 

frequency

FTR Fourier Transform Regression

 

g

 

acceleration of gravity, 32.174 ft/s

 

2

 

Hp

 

pressure altitude, ft

IFCS Intelligent Flight Control System

 

I

 

x

 

roll moment of inertia, slug-ft

 

2

 

I

 

xz

 

product of inertia, slug-ft

 

2

 

I

 

y

 

pitch moment of inertia, slug-ft

 

2

 

I

 

z

 

yaw moment of inertia, slug-ft

 

2

 

j

 

imaginary number, 

c

1–



 

2

 

J

 

cost function

M Mach number

 

m

 

aircraft mass, slugs

NASA National Aeronautics and Space Administration

 

p

 

roll rate, rad/sec

PID parameter identification

PreSISE Prescribed Simultaneous Independent Surface Excitations

PTNN pre-trained neural network

 

q

 

pitch rate, rad/sec

dynamic pressure, psf

 

r

 

yaw rate, rad/sec

 

Re

 

real part

RFT recursive Fourier transform

 

S

 

wing area, 608 ft

 

2

 

t

 

time

 

V

 

true airspeed, ft/s

 

X

 

least-squares regressor matrix

 

Y

 

calculated force or moment coefficient

 

α

 

 angle of attack, deg

 

β

 

 angle of sideslip, deg

 

δ

 

a

 

aileron deflection, deg

 

δ

 

ail

 

individual aileron deflection, deg

 

δ

 

c

 

symmetric canard deflection, deg

 

δ

 

can

 

individual canard deflection, deg 

 

δ

 

dc

 

differential canard deflection, deg 

 

δ

 

dt

 

differential stabilator deflection, deg

 

δ

 

e

 

elevator (symmetric stabilator) deflection, deg

 

δ

 

r

 

rudder deflection, deg

 

δ

 

rud

 

individual rudder deflection, deg

 

δ

 

s

 

individual stabilator deflection, deg

 

δξ

 

generic control surface deflection, deg

 

ε

 

complex equation error

 

θ

 

 vector of unknown parameters

q



 

3

 

σ

 

standard error

 

ω

 

angular frequency, rad/sec

Superscripts

 

T

 

transpose

^ estimate

~ discrete Fourier transform

† complex conjugate transpose

-1 matrix inverse

. time derivative

' tuned-down coefficient

 

INTRODUCTION

 

Intelligent Flight Control System (IFCS) concepts are currently being developed by NASA (National
Aeronautics and Space Administration), academia, and industry. The goal of the IFCS project is to be
able to modify in real time the control laws for an aircraft that has been damaged in flight as a result of
battle, weather, or a system failure. To perform this reconfiguration, changes in aircraft flight
characteristics must in some way be recognized onboard.

The IFCS concept studied here uses aircraft stability and control derivatives to calculate control law
gains during flight.
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 Figure 1 illustrates this concept.
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 Near-real-time estimation of the stability and
control derivatives is required to identify differences from a reference model. These differences are
passed to an online-learning neural network, which can learn and recall them based on the flight
condition. The recalled derivative differences are added to the reference model and the results are used to
generate the new control laws. This IFCS concept is referred to as an indirect-adaptive system.

The process for determining the stability and control derivatives is known as parameter identification
(PID) or parameter estimation. With regard to aircraft, this involves analyzing measured aircraft
responses from inputs such as control surface movements. PID techniques are generally grouped into
three categories: output error,
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 filter error, and equation error.
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 Output and filter-error methods are
used to solve the nonlinear aircraft equations of motion and are typically used in post-flight analysis. The
equation-error techniques are used with system models that are linear in the aerodynamic model
parameters, but can otherwise have arbitrary nonlinearities.

The technique used for real-time PID in this study was an equation-error technique known as Fourier
transform regression (FTR), which operates in the frequency domain. Flight data were run through the
real-time algorithm postflight to evaluate this technique. The low computational requirements of FTR are
believed to make it suitable for onboard use. Comparison data were from a linearized model obtained
from finite differences using a nonlinear simulation based on wind tunnel data. This paper presents
results from flight studies and details the effectiveness of using the real-time algorithm for stability and
control derivative identification. The paper also discusses some of the implementation issues that must be
addressed to enable future online real-time parameter identification using the FTR technique. 
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AIRPLANE DESCRIPTION

 

Figure 2 shows the airplane used for this research. The airplane is a pre-production Boeing
(McDonnell Aircraft Company, now the Boeing Company, Chicago, Illinois) F-15B that has been highly
modified to support various test programs. The most visible modifications are canards added near the
pilot station that are modified horizontal stabilators from the Boeing F-18 aircraft. The propulsion system
consists of two Pratt & Whitney (West Palm Beach, Florida) F100-PW-229 engines, each equipped with
an axisymmetric thrust vectoring pitch-yaw balance beam nozzle. The thrust-vectoring feature was
disabled for the flights described in this report. The reference areas and lengths used for
nondimensionalizing forces and moments are listed in Table 1.

 

Control Surfaces

 

The test airplane has five pairs of control surfaces: canards, ailerons, trailing-edge flaps, stabilators,
and rudders. Flaps and aileron droop are manually set by the pilot and only used for takeoff and landing
configurations. Conventional pitch control is provided by symmetric deflection of the all-moving
horizontal stabilators and canards. Roll control uses aileron and differential stabilator, which is
sometimes referred to as differential tail deflection. Directional control is provided by rudder deflection
and differential canard. Definitions of control surface deflections are as follows:

Pitch effectors:

Yaw-roll effectors:

 

Table 1. Test aircraft reference dimensions.

Wing area 608 ft

 

2

 

Mean aerodynamic chord 15.94 ft

Wing span 42.7 ft

Moment reference FS 557.2, WL 116.3, BL 0.0

δe 0.5 δsleft δsright+( )=

δc 0.5 δcanleft δcanright+( )=

δr 0.5 δrudleft δrudright+( )=

δa δailleft δailright–=

δdt δsleft δsright–=

δdc δcanleft δcanright–=
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Instrumentation and Data Acquisition

 

The test airplane was equipped with a complete set of air data, inertial, and control surface position
instrumentation. Input data were provided to the PID algorithm at 40 Hz. All parameters used in this
study are from analog measurement sources, except Mach number, true airspeed, pressure altitude, roll
angle, and pitch angle. These parameters are from the Military Standard 1553 Databus, as they would be
for an onboard system. Time latencies in these parameters would not have a substantial effect on the PID
results.

Indicated angles of attack and sideslip from the noseboom were corrected for boom offset angles,
noseboom bending, angular rates, upwash and sidewash. Measured vertical and lateral accelerations were
corrected to the center of gravity. All state and control variables were filtered to remove biases by using
low-pass filters with very low cutoffs to identify steady-state components that were then subtracted from
the original signals. All of these data processing calculations were performed as part of the real-time PID
system.

Accurate estimates of weight, center of gravity (c.g.), and inertias were required for each flight
maneuver. Fuel weight measurements were obtained from three fuselage and two wing tank sensors. A
model was used to calculate mass properties estimates based on the fuel weights at each data point. This
model was included in the data processing portion of the PID algorithm.

MANEUVER DESCRIPTION

This section describes the two types of flight test maneuvers analyzed in this study. Examples of
control-surface time histories for each kind are presented.

Pilot Inputs

The primary flight test maneuvers used in this study were pilot inputs. In particular, square doublets
were used because of their desirable frequency content.3 Doublets were typically separated into two
categories: pitch and yaw-roll. The yaw and roll doublets were combined to separate out the effects of
coupling in the lateral-directional responses. Pilot inputs are advantageous because they can be
performed quickly and throughout the entire flight envelope.

Figure 3 shows that pilot stick and rudder inputs result in high correlation between the symmetric
canard and angle of attack, rudder and differential canard, and differential stabilator and aileron. This
correlation renders the control effectiveness derivatives unidentifiable because the PID technique cannot
discern which surface is causing the response. This problem can be alleviated by altering the PID
technique, as will be discussed later in this paper, and by using automated surface inputs.

Automated Surface Excitations

Programmed test inputs were also used for this study. These were automated stacked sine wave
inputs, which simultaneously moved all control surfaces at unique frequencies. These maneuvers, called
Prescribed Simultaneous Independent Surface Excitations (PreSISE), were hard coded into the flight
computer. The duration of the inputs was fifteen seconds. PreSISE maneuvers alleviate the
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aforementioned correlation problems and provide a means of estimating all stability and control
parameters at the same time. The control surface deflections are calculated using the equation:

where A is the amplitude, which was selected by the pilot. Three amplitudes were available: 0.2, 0.4, and
0.8 degrees. The parameters f1 and f2 determined the frequency characteristics of the inputs, varied for
each collective control surface, and are shown in Table 2. Figure 4 shows an example of a 0.8 deg Pre-
SISE maneuver. These maneuvers are added to the commanded surface positions, so the overall positions
will be influenced by trim values, control system feedback, and pilot inputs during the maneuver.

METHODS OF ANALYSIS

This section describes the analytical technique used for this study. The basic real-time PID algorithm
will be discussed along with modifications that were made to it. 

PID Technique

The real-time PID method used for this study is FTR, developed by Morelli.5 Equation-error PID
assumes that the individual force and moment coefficients of the airplane can be expressed as sums of
component terms as follows:

(1)

(2)

(3)

(4)

Table 2. Frequencies used for PreSISE maneuvers.

Surface f1 (Hz) f2 (Hz)

δe 0.3125 0.9375

δc 0.6250 1.2500

δdt 0.6250 1.5625

δa 1.2500 2.1875

δr 0.9375 0.0000

δdc 0.3125 1.8750

δξ A f 1t( )sin f 2t( )sin+( )=

CZ CZo
CZα

α CZδe
δe CZδc

δc+ + +=

CY CY 0
CYβ

β CYδα
δα CYδr

δr CYδdc
δdc CYδdt

δdt+ + + + +=

Cm Cm0
Cmα

α Cmq

qc
2V
------- Cmδe

δe Cmδc
δc+ + + +=

Cl Cl0
Clβ

β Clp

pb
2V
------- Clr

rb
2V
------- Clδa

δa Clδr
δr Clδdc

δdc Clδdt
δdt+ + + + + + +=
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(5)

The roll and yaw rates, p and r, are nondimensionalized using the wingspan, b, and the velocity, V.
Pitch rate, q, is nondimensionalized using the reference chord, , and velocity. Terms that multiply the
stability and control derivatives are called regressors. The number and type of regressors will often vary
depending on whether the force or moment coefficient is longitudinal or lateral-directional. Typically, the
force equations will not include rate derivatives. For this study, no bias terms (such as ) were
estimated for any of the force and moment coefficients.

The coefficient expansions of equations (1) through (5) can be rewritten in the form

(6)

where Y is the force or moment coefficient, X is the matrix of regressors, and θ is the matrix of unknowns.
For the pitching moment case,

(7)

(8)

(9)

The objective of parameter estimation is to solve equation (6) for the unknown coefficients in θ.

The left sides of equations (1) through (5) are the force and moment coefficients that are computed
using measured flight data. The force coefficients are computed using the measured accelerations, after
they are translated to the c.g. location, and the following equations:

(10)

(11)

Cn Cn0
Cnβ

β Cnp

pb
2V
------- Cnr

rb
2V
------- Cnδa

δa Cnδr
δr Cnδdc

δdc Cnδdt
δdt+ + + + + + +=

c

Cm0

Y t( ) X t( )θ=

Y Cm=

X 1 α qc
2V
------- δe δc=

θ

Cm0

Cmα

Cmq

Cmδe

Cmδc

=

CZ
mg
qS
-------aZ=

CY
mg
qS
-------aY=
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Axial force derivatives were not considered in this study, because they do not exert much influence
on important flying qualities and they typically require good thrust measurements.

The moment coefficients are computed using inertias, angular rates, and angular accelerations.3 For a
symmetric aircraft,

(12)

(13)

(14)

The use of angular accelerations in these equations poses problems for real-time parameter estimation
and is one of the reasons why frequency domain techniques are attractive. Angular accelerations are
typically computed by numerical differentiation, which can lead to signal noise and time skew problems.
In the frequency domain, time derivatives are easily computed algebraically.

After the force and moment coefficients are computed, a least-squares regression technique can be
used to estimate the derivatives. For frequency domain regression, the data are put into the frequency
domain via a Fourier transform. Real-time frequency domain methods use recursive Fourier transforms. 

The finite Fourier transform of the signal x(t) is defined by5

(15)

which can be approximated using the equation

(16)

This can be rewritten as 

(17)

where ∆t is the time step and X(ω) is the discrete Fourier transform (DFT). The DFT of a parameter x(t) at
time step i can be expressed as:5

(18)

where  and

(19)

Cl ṗI x ṙI xz– qr Iy Iz–( )– pqIxz–[ ] qSb⁄=

Cm q̇Iy r
2

p
2

–( )I xz– rp Iz I x–( )–[ ] qSc⁄=

Cn ṗI xz ṙIz pq Ix Iy–( )–+– qrIxz+[ ] qSb⁄=

x̃ ω( ) x

0

T

∫ t( )e
jωt–

dt≡

x̃ ω( ) ∆t xie
jωt– i

i 0=

N 1–

∑≈

x̃ ω( ) X ω( )∆t≈

Xi ω( ) Xi 1– ω( ) xie
jωi∆t–

+=

j 1–=

e
jωi∆t–

e
jω∆t–

e
jω– i 1–( )∆t

=
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Equations (18) and (19) show that the Fourier transform at any time step can be expressed as a
function of the data at that time step and the Fourier transform at the previous time step, hence the name
recursive Fourier transform (RFT). The simplicity of the RFT calculation makes this technique very
advantageous for real-time applications.

The force and moment coefficients and regressors of equations (1) through (5) were transformed into
the frequency domain using this technique. Equation (6) can then be formulated as a standard
least-squares regression problem with complex data,5

(20)

where

(21)

(22)

and ε represents the complex equation error in the frequency domain. The parameter n is the number of
frequencies used in the DFT. For PID, it is important to obtain the Fourier transforms at frequencies of
interest to rigid body flight mechanics. Confining the data analysis to the frequency band where the sys-
tem dynamics reside automatically filters out wide-band measurement noise and structural response
modes that are typically outside of the frequency band of interest.5 For the F-15 analysis, thirty-six dis-
crete frequencies were used from 0.1 Hz to 1.5 Hz at 0.04 Hz increments. Increasing the number of fre-
quencies will increase computational time and memory requirements. 

The least-squares cost function is:

(23)

The parameter vector estimate that minimizes the cost function is5

Ỹ X̃θ ε+=

Ỹ

ỹ ω1( )

ỹ ω2( )

.

.

.
ỹ ωn( )

=

X̃

x̃ ω1( )

x̃ ω2( )

.

.

.
x̃ ωn( )

=

J 1
2
--- Ỹ X̃θ–( )† Ỹ X̃θ–( )=
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(24)

and the estimated parameter covariance matrix is5

(25)

where p in this case is the number of elements in the vector . The parameter standard errors, σ, are cal-
culated by taking the square root of the diagonal of the covariance matrix.

Data Forgetting

For flight purposes, the running sum of the RFT may produce problems because it will contain
information from data at older flight conditions that might be vastly different from the current ones. Since
stability and control parameters vary with flight condition, this would cause the least-squares problem to
be corrupted. As such, the real-time PID algorithm was modified to compute parameter estimates from a
specified time window by removing old data from the RFT. With this modification, the DFT shown in
equation (18) becomes:

(26)

for  and k is the number of data points in the window,

(27)

The size of the window should be chosen to balance information quantity and sensitivity to flight
condition. The addition of data forgetting cancels one of the advantages of using the RFT, because some
time history of data must be retained. This adds complexity to the system and increases memory
requirements.

Dealing With Correlated Inputs

As mentioned before, pilot inputs cause many of the signals used in the PID analysis to be correlated
for this particular test airplane. While the automated PreSISE maneuvers should alleviate these problems
at discrete test points, a practical real-time application would require that the PID algorithm work
sufficiently with only pilot inputs. Therefore, changes were made to the algorithm in an attempt to
remove the correlation problems. The resulting system was referred to as tuned-down.

In the tuned-down version of the FTR method, half of the stability and control derivatives were
removed from the estimation problem. Specifically, the aileron, canard, and angular rate derivatives were
eliminated. Reference values were used as substitutes for derivatives that were not estimated. These
values came from a nonlearning neural network, referred to as the pre-trained neural network (PTNN).
The PTNN served as a table lookup based on Mach number, α, β, altitude, and control surface positions.

θ̂ Re X̃†X̃( )[ ]
1–
Re X̃†Ỹ( )=

cov θ̂( ) 1
n p–( )

----------------- Ỹ X̃θ–
2

Re X̃†X̃( )[ ]
1–

=

θ̂

Xi ω( ) Xi 1– ω( ) xie
jωi∆t–

xi k– e
jω i k–( )∆t–

–+=

i k>

k
twindow

∆t
-----------------=
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The contributions of these terms were removed from the total forces and moments, creating new
coefficients:

(28)

(29)

(30)

(31)

(32)

where the primed terms are the new coefficients to be used in the regression. These computations were
done before the data were transformed into the frequency domain.

While eliminating correlation issues, tuning down the FTR method in this way introduces some
accuracy issues. Any errors in the fixed parameters will result in bias errors in the estimated parameters. 

Confidence Measures

For incorporation of the real-time PID technique into an onboard adaptive system, it is important that
the system has a way of knowing whether or not the parameter estimates are acceptable. Accomplishing
this with a single criterion is difficult. A system of confidence tests can provide better results. The goal is
a system that filters out all inaccurate estimates, but still allows sufficient amounts of good data to pass
through. 

One of the primary tools available for checking the validity of the PID results are the parameter
standard errors, σ, which are computed as previously mentioned. The standard errors indicate
mathematical confidence in the estimated derivatives. One way to evaluate the quality of the PID results
is to check the computed standard errors versus limits. If the errors are below the limits, then the PID
estimates will be deemed acceptable. Standard errors can also be used to calculate relative errors, which
are the standard errors divided by the absolute value of the parameter estimates. These errors can be
checked against defined limits that are specified for each parameter. Relative errors are a way of
evaluating the sizes of the standard errors in relation to the sizes of the derivatives. This is a potential
problem because it tightens the accuracy requirement as the absolute value of the estimated parameter
shrinks. 

Simulation studies indicated that using error-based tests alone might not be sufficient for
differentiating good results from bad, especially during situations in which inputs to the system were
small or nonexistent. To solve this problem, another test was developed that checks the information

CZ' CZ CZ
δc PTNN,

δc–=

Cm' Cm Cmδc PTNN,
δc– Cmq PTNN,

qc
2V
-------–=

CY ' CY CYδdc PTNN,
δdc– CYδa PTNN,

δa–=

Cl' Cl Clδdc PTNN,
δdc– Clδa PTNN,

δa– Clp PTNN,

pb
2V
------- Clr PTNN,

rb
2V
-------– 

 –=

Cn' Cn Cnδdc PTNN,
δdc– Cnδa PTNN,

δa– Cnp PTNN,

pb
2V
------- Cnr PTNN,

rb
2V
-------– 

 –=
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content in the frequency-domain force and moment coefficient data. Parseval's Theorem can be used to
obtain the equation for the power contained in the data for each coefficient:7

(33)

This integration can be done numerically over the frequency range of the analysis and the resulting
value can be compared to specified bounds to determine if the information content is sufficient to get
acceptable PID results. If there is too little information, the parameter estimates will automatically be
deemed unacceptable. If sufficient information is present, overall confidence will still depend on the
results of the error-related tests. This method alone can exclude many inaccurate derivative estimates.

For this study, a confidence measure system has been designed using a combination of these tests.
Figure 5 illustrates this system, which also includes a persistence test that was added to block out
sporadic points that might slip through the other tests. The standard error test is used to overlay the
persistence test results. If both are passed, the estimated stability or control derivative will be considered
good. The confidence measure system was designed to provide flexibility and a means of evaluating the
usefulness of each individual test.

Figure 6 shows a schematic of the persistence test. Results of the information content and relative
error tests are passed to the persistence test, which uses a counter to determine the validity of the results.
This counter is limited to the range of zero to five and is incremented by one whenever the information
and relative errors tests are both passed. When the value is at three or higher, the persistence test is
passed. From a zero counter, estimates must pass the relative error and information tests three straight
times before passing the persistence test, which acts as a way of specifying a convergence time. When at
least one of those tests has been failed, the counter is reduced by three. The result is that, after a string of
good values, a single failed point does not reset the counter completely. The persistence test was designed
to allow a considerable amount of control over its behavior.

Bounds for the information content and error tests were determined using simulation results. Noise
was added to the simulation data prior to doing PID to better reflect flight data. PreSISE maneuvers and
doublets were simulated at several flight conditions. The FTR results were analyzed to determine when
the derivative estimates were converged. The standard and relative error bounds were then specified so
that the confidence tests would be passed at the proper times. Since the results vary somewhat with flight
condition and maneuver type and amplitude, engineering judgment was used to balance them. Table 3
shows the resulting standard and relative error bounds. The information content bounds shown in Table 4
were developed in the same manner.

Ỹ ω( )
2

∞–

∞

∫ dω
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RESULTS AND DISCUSSION

Flight test maneuvers were performed primarily at three flight conditions: Mach 0.75 and an altitude
of 20,000 feet, Mach 0.90 and an altitude of 25,000 feet, and Mach 1.2 and an altitude of 32,000 feet. The
PreSISE maneuvers were flown at these conditions only, typically as a set of three of each magnitude.
Sets of pitch, roll, and yaw doublets were also done at these conditions, and sequences were flown in
which the pilot performed doublets frequently while varying flight conditions. Data from all of these
maneuvers were run through the real-time PID algorithm postflight. Some ground testing of the entire
adaptive system, with PID and both the learning and pre-trained neural networks, has been done on a
research computer that can be installed onboard the airplane. This computer had three 400-MHz

Table 3. Simulation-based error bounds used for this study.

Derivative standard error (1/deg) relative error

8.35e-04 0.10

4.69e-04 0.10

6.05e-04 0.10

2.47e-04 0.10

7.74e-04 0.10

1.37e-04 0.10

1.98e-04 0.10

1.79e-04 0.10

4.98e-05 0.10

8.12e-05 0.25

4.79e-04 0.15

7.36e-05 0.25

1.77e-04 0.15

Table 4. Simulation-based information content bounds used for this study.

Coefficient Limit

CZ

CY

Cm

Cl

Cn

CZα

CZδe

Cmα

Cmδe

CYβ

CYδdt

CYδr

Clβ
Clδdt

Clδr

Cnβ
Cnδdt

Cnδr

9 10
3–

×

5 10
5–

×

9 10
5–

×

6 10
7–

×

3 10
6–

×
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processors and 128 MB of RAM. The tests indicate that the FTR algorithm can, in fact, be used for near
real-time PID in flight.

Comparison data were obtained by linearizing the aerodynamic model used by the nonlinear
simulator. Inaccuracies are expected in the aerodynamic model data, by their nature, so they cannot be
used to truly judge the accuracy of the PID results. The aerodynamic model, however, is useful for
assessing the reasonableness of the parameter estimates.

Parameter estimates were run through the aforementioned confidence measure system. The error
bounds derived by simulation data were occasionally much lower than the standard and relative errors in
the flight-determined results. While not perfect, the results from the confidence tests help to illustrate
which estimates are good and are therefore a reasonable indication of the values that would be passed to a
learning neural network in an adaptive control scheme. The results can also be used to refine the error
bounds and the confidence measures system in general. Derivative estimates that passed the confidence
tests are referred to as valid points and will be shown as symbols in the figures.

Effects of Data Forgetting

Some consideration must be given to the way in which the use of data forgetting affects the PID

results. Figure 7 shows a comparison of estimated  with and without the use of data forgetting, along

with estimated standard errors. The data retention window was 10 seconds. Symbols indicate the points

that passed the confidence tests. Comparison values from the linearized aerodynamic model are shown.

Since these results come from just a portion of the flight data, they are not a perfect replication of what

would be seen if the PID algorithm had been running for the entire flight, especially in the

no-data-forgetting case.

This figure illustrates how FTR with data forgetting converges onto a value as the maneuver is
performed and remains there for a period after the maneuver is complete. Ten seconds after the PreSISE
maneuver ends, all of the data relating to it have been forgotten and FTR begins to produce bad estimates
because it no longer has information with which to work. When the next maneuver is initiated, FTR again
begins to calculate good estimates. While both versions of FTR converge to approximately the same
value, the results of the data-forgetting version are slightly noisier, and remain so, for the duration of the
PreSISE maneuver. Note that for the case without data forgetting, additional maneuvers do not seem to
appreciably decrease the standard errors. It is not uncommon for the standard errors to drift slightly up.
This indicates that the dynamics are changing slightly, which is expected. This is one way the estimator
shows that the model is changing. Also of note is that the standard error plot mirrors the derivative plot,
which shows that the standard errors accurately indicate the quality of the parameter estimation results.

For the test airplane,  is an ideal parameter to demonstrate the necessity of data forgetting. The

presence of canards makes the aircraft statically longitudinally unstable at subsonic speeds. At supersonic

speeds, however, the aircraft is stable. As such,  changes signs across Mach 1. Figure 8 shows 

estimated using tuned-down FTR for a maneuver sequence that goes from subsonic to supersonic speeds

and back. Also shown are the measured pressure altitude (Hp) and Mach number. The sequence begins

subsonically with some PreSISE maneuvers, followed by doublets. After attaining supersonic speed,

Cnδr

Cmα

Cmα
Cmα
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some general (non-PID) maneuvering was done, followed by a single PreSISE maneuver. The aircraft

slowed back down to subsonic speeds for a turn, then returned to the supersonic flight condition for two

more PreSISE maneuvers. From the figure, it can be seen that FTR identifies the change in  when

data forgetting is used. 

A small data-retention window would be necessary to detect a failure in a period of time suitable for
an adaptive control system. It would also be required for cases in which flight conditions are rapidly
changing. The window would need to be large enough, however, to retain sufficient information to
produce good estimates. For the remainder of this study, a ten second retention window is used. This
window length balances the size requirements with an emphasis on the accuracy of the parameter
estimates.

Tuned-Down vs. Normal FTR

Since the onboard algorithm requires tuned-down FTR to analyze piloted doublets, it is necessary to

evaluate the differences between the tuned-down results and those of the normal FTR. This is possible by

analyzing PreSISE maneuvers, since their uncorrelated nature allows use of the unmodified FTR.

Analysis of PID results at the three flight conditions indicates that errors due to tuning down vary by

parameter and by flight condition. Figure 9 shows results for  at the Mach 0.75 condition. In this

case, the tuned-down and normal FTR results do not match. This indicates that errors exist in the assumed

PTNN values for the non-estimated derivatives  and . To test this, the  and  estimates

from the full FTR were used in place of the PTNN values for the tuned-down PID algorithm. As Figure

10 shows, the resulting  estimates then matched the full FTR result.

Doublet Results

Because this study was based on an implementable real-time algorithm for the test airplane, attention
is focused on the FTR results for pilot input doublets. A more thorough analysis of PreSISE maneuver
results has been presented elsewhere.8 Figures 11 through 15 show all FTR results for a doublet sequence
at Mach 0.9 and an altitude of 25,000 ft. This sequence consists of three sets of pitch, yaw, and roll
doublets. For these results, the tuned-down FTR technique was used with the PTNN derivatives
substituting for the non-estimated parameters. 

Figure 11 shows the two estimated z-axis force derivatives for the tuned-down FTR,  and ,

along with the estimated standard errors for the elevator derivative. No points for either derivative passed

the confidence tests, though  matches the aerodynamic model well. This indicates that the error

bounds for  might have been too restrictive. The figure shows that the standard error for  is

much higher than the error bound. The substantial difference between the estimated  and the

aerodynamic model value suggest that the FTR results may be inaccurate for this derivative, though it is

possible that the aerodynamic model is in error. If the PID results are in error, the confidence tests

worked as intended by not declaring any of the derivatives as valid. The nearly flat spots in the

derivatives following the maneuvers are present because very little information is being added to the

Cmα

Cmα

Cmq
Cmδc

Cmq
Cmδc

Cmα

CZα
CZδe

CZα
CZα

CZδe
CZδe
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data — so the least-squares problem is not changing until information is removed by means of the

data-forgetting capability. Changes in the estimated derivatives do appear, however, when subsequent

doublets are performed.

The three estimated y-force derivatives are shown in Figure 12. All three derivatives match the

aerodynamic model very well. Several points passed the confidence tests, especially for . The results

for  indicate that the information-content test for CY was passed for most of the sequence, which

suggests that the simulation-derived bound might be too permissive. The other two derivatives, 

and , did not pass the confidence tests as often as  because they failed the error tests. Note that

 converges shortly after the pedal input, whereas  requires the lateral stick input.

Figure 13 shows the two estimated pitching moment derivatives,  and , and the estimated

standard errors for . Both derivatives disagree somewhat with the predicted values from the

aerodynamic model. Good repeatability is shown for , however, though no points passed the

confidence tests. Again, the preset bound on standard error was too low. For , results from the first

and last doublet agree well. The results for the second doublet, which do not agree, did not pass the

confidence tests. Specifically, the relative error test was failed for that portion of the results. The relative

error was roughly 20 percent and the boundary was 10 percent.

Results for the rolling moment derivatives are shown in Figure 14. Two of these derivatives,  and

, passed the confidence tests many times. Good repeatability was demonstrated for all three

derivatives. Estimates for  agree well with the aerodynamic model, but estimates of the other two

derivatives do not.  converged to a different sign than the prediction, but did not pass all of the

confidence tests.  passed the standard error test, but not the relative error test. It is inconclusive

whether the aerodynamic model or the PID results are in error.

Figure 15 shows the results for the yawing moment derivatives. All three estimated parameters ( ,

, and ) demonstrated good repeatability. They also passed the confidence tests very often and

agreed well with the aerodynamic model. For the most part, the yawing moment derivatives converged

quickly to a solid answer. While convergence time varies by maneuver and is dependent on the input,

FTR results typically converged a couple of seconds after the maneuver.

The figures indicate that the confidence measure system worked adequately for this study. In some

cases, the simulation-based error bounds were too low, and some derivative estimates that may have been

accurate did not pass the tests. Examination of the results also indicates some areas where the confidence

tests were not as selective as they should be. This can be seen, for example, in the results for ,

where a wide range of values passed the tests. Much work would be required to improve the confidence

measures, by either tuning the various error bounds, or developing a new system and/or new tests.

CYβ
CYβ

CYδdt
CYδr

CYβ
CYδr

CYδdt

Cmα
Cmδe

Cmδe
Cmδe

Cmα

Clβ
Clδdt

Clβ
Clδr

Clδr

Cnβ
Cnδr
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CONCLUDING REMARKS

Intelligent Flight Control System (IFCS) concepts are currently being developed by NASA,
academia, and industry. The goal of the IFCS project is to be able to modify in real time the control laws
for an airplane that has been damaged in flight as a result of battle, weather, or a system failure. In some
IFCS implementations, near real-time stability and control parameter identification (PID) is necessary for
successfully reconfiguring the control system. Initial flight tests have been conducted to gather data to
assess the accuracy and robustness of proposed on-board implementations of stability and control PID
techniques. This paper presents results of one such technique that uses a frequency-domain,
equation-error approach called Fourier transform regression (FTR).

Results generated using flight data have shown that the FTR technique provides accurate stability and
control derivative estimates in real time. These results generally compared well with aerodynamic model
predictions. The PID algorithm was modified to work around correlation problems that occur with pilot
inputs by replacing some of the terms with a priori values, which introduced some error in the results.
Results indicate that a data-forgetting capability must be incorporated into the FTR method if continuous
operation at changing flight conditions is required.

A confidence measure system was devised to automatically determine accurate stability and control
derivative estimates from inaccurate ones. Such a system would be required for an indirect-adaptive
control system to tell the learning neural network the data on which to train. The confidence tests were
based on standard and relative errors, information content, and persistence. The tests’ error and
information content bounds were based on simulation studies. Flight results indicated that many of these
bounds were too restrictive. The confidence measure system was marginally successful overall. These
results can be used to improve the definition of confidence measures for future tests. 
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FIGURES

Figure 1. Schematic of IFCS concept.

Figure 2. F-15 IFCS aircraft.
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Figure 3. Time history of control surfaces for pilot input doublets.
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Figure 4. Example of a PreSISE maneuver

Time, sec
0 2 4 6 108 12 14 16

030194

–2

0

2

0

–2

0

2

–5

0

5

–2

0

2

2

4

6

–10

–5

δa
,d

eg
δe

,d
eg

δd
t,

d
eg

δr
,d

eg
δc

,d
eg

δd
c,

d
eg



22

Figure 5. Overview of confidence measures system

Figure 6. Diagram of consistency / persistence test
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Figure 7. Effect of data forgetting on FTR results (M = 0.9, Hp = 25,000 ft).
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Figure 8. Long-term effects of data forgetting on FTR results.
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Figure 9. Comparison of tuned-down and full FTR results (M = 0.75, Hp = 20,000 ft).
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Figure 10. Comparison of full FTR with adjusted tuned-down FTR (M = 0.75, Hp = 20,000 ft).
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Figure 11. Estimates of z-axis force derivatives (M = 0.9, Hp = 25,000 ft).
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Figure 12. Estimates of y-axis force derivatives (M = 0.9, Hp = 25,000 ft).
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Figure 13. Estimates of pitching moment derivatives (M = 0.9, Hp = 25,000 ft).
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Figure 14. Estimates of rolling moment derivatives (M = 0.9, Hp = 25,000 ft).
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Figure 15. Estimates of yawing moment derivatives (M = 0.9, Hp = 25,000 ft).
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